

In Home Anti-Gravity Harness

Team 10

Khaled Alosaimi

Eileen Baker

Hasan Farman

A.J. Garcia

Noah Oliver

- ➤ The goal of this project is to design a DIY manual for an anti-gravity balancing harness system
- ➤ The client is Dr. Kyle Winfree from the Wearable Informatics Lab at NAU
- > The product is directed towards children (under the age of 5)

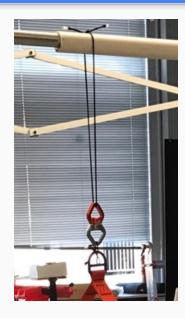
Project Description

Current Design

Updates – What's Been Accomplished

• Installed track system to frame

Assembled full harness system



Updates – Design Changes

- Used a rock climbing swivel to enable changing of directions
- Considered adding bearings to move harness system
- Ran nylon rope through PVC sliding bar to distribute weight

Updates – What's Left

Build design with steel material frame

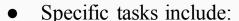
 Use T-track shape to better enclose/secure the wheels to the railing system

Updates – What's Left

- Change connection from one wheel on each side to two/multiple
 - Prevent frame from bending

- Use data from Design of Experiments (DOE) to find the best way to install bearings
- Finalize attachment method to connect spreader/harness assembly to bearings

Updates – DOE


- The DOE focused on maximizing the ease of movement of the device
- Changed the length of PVC section (2ft vs. 4ft), the material of the wheels (nylon vs. steel), and the method of lateral movement (bearings+PVC vs. PVC alone)
- Evaluated by the total distance traveled (lateral movement added to forward movement)

	Wheel Material	Length of PVC	Bearings vs. PVC
Effects	12.75	-1.375	-10.625
	3*SD= 25.117		

• DOE showed steel wheels and PVC alone worked best, though not statistically significantly

Moving Forward - Manufacturing

- The first manufacturing step is to improve the rail system safety and mobility
 - This includes integrating bearings onto sliding bar
- Build our own spreader bar to be lightweight
- Upgrade design with higher quality materials and increase safety

- Hasan ordering parts
- Khaled update website
- Eileen and A.J. instruction manual
- Noah rail system research

Moving Forward - Testing

Testing Procedures

- Weight of the system
- Storage space of the system set up/broken down
- Safe weight range for user
- Comfort of supportive padding in the harness
- Finding pinch points and sharp edges on the system to prevent harm to the child
- Durability of the system
- Nontoxic materials

Contingencies

- Set aside \$300 budget for redesigning the device
- Add one week on the schedule for any potential problems with a redesign

Schedule

■ 14.0 Midpoint Review Presentation	n 2/28/17	3/6/17	
 14.1 Project Description 	2/28/17	2/28/17	
14.2 Updates	3/1/17	3/2/17	
 14.3 Construction 	3/3/17	3/3/17	
 14.4 Final Construction Plans 	3/6/17	3/6/17	
 15.0 Order Parts Based off Hardwa 	3/7/17	3/17/17	
∃ ■ 16.0 Hardware Review 2	3/21/17	3/21/17	
 16.1 Close to Final Assembly 	3/21/17	3/21/17	
 17.0 Fourth ME486 Team Meeting 	3/22/17	3/27/17	
 18.0 Third ME486 Staff Meeting 	3/28/17	3/31/17	
■ ■ 19.0 Final Product Testing Proof	4/3/17	4/12/17	
 19.1 Test every subsystem 	4/3/17	4/12/17	
■ 20.0 UGRADS Presentation	4/13/17	4/24/17	
 20.1 Poster 	4/13/17	4/14/17	
 20.2 Final Assembly 	4/17/17	4/24/17	
∃	4/25/17	5/1/17	
 21.1 CAD Model 	4/25/17	4/26/17	
 21.2 Final Report 	4/27/17	4/28/17	
21.3 Peer Review 3	5/1/17	5/1/17	

Schedule

Resources Chart

The team is currently on task with all deliverables

Budget

	Cost		Cost
Metal Bar	\$12	Ball Bushing Linear Motion Bearings(2)	\$20
Swivel Ez-Up	\$25	Zinc-Plated Punched Angle	\$20
		Garage Rollers	\$5
	\$219	PVC Pipe	\$12

14

Budget

Total Amount Available: \$1500

Actual Expenses to Date: \$557.13

Resulting Balance: \$942.87

Acknowledgements

We'd like to thank W.L. Gore and Associates for their funding of this project.

Questions or Comments

